
3D object detection from
arbitrary RGB camera rigs
Ayush Baid and Nitish Sontakke

Problem Statement

● Object detection from monocular RGB images
○ Very little overlap between camera frustums

Source: nuScenes Source: Lyft

https://www.nuscenes.org/nuscenes#overview
https://self-driving.lyft.com/level5/data/

Proposed Solution - Lift Splat Detect

Image Credits: Phillion el al. ECCV 2020

Proposed Solution - Network

Image
Image

EfficientNet - B0 Geometry transform

Resnet

Context

Depth Distribution

x

Scores Localization

Proposed Solution - Loss

We then experiment with 3 different loss functions for scores:

● Huber loss
● Huber loss with reweighting negative samples (used in OFT, Roddick et al.)
● Focal loss (used in CenterPoint, Yin et al.)

For all other outputs, we use a Huber loss evaluated on just the anchors which have overlap with Ground
Truth (GT).

https://arxiv.org/pdf/1811.08188.pdf
https://arxiv.org/pdf/2006.11275.pdf

Baseline

We are working with the nuScenes dataset.

Since we have limited compute, we cannot run all benchmarks ourselves and will rely on leaderboard

results to serve as our baselines. We compare our proposed method to the following camera-only

methods:

● CenterNet

● Mono-DIS

https://www.nuscenes.org/
https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any

Results #1 - Monocular Training

● Training on monocular images for 50 epochs

Method mAP (↑) ATE (↓) ASE (↓) AOE (↓)

Lift-Splat-Detect (50 epochs) (val) 0.22 0.52 0.16 0.15

CenterNet 0.54 0.47 0.14 0.09

Mono-DIS 0.48 0.61 0.15 0.07

Object Detection for Cars

Issues - Monocular Training

Loss on train set Loss on val set

Overfitting!

Proposed Solution #2

● Use LiDAR as privileged information: available during training, absent during test

● How to use PI? Heteroscedastic Dropout
○ Multiplicative dropout sampled from a distribution
○ Variance controlled with PI

Image Credits: Lambert el al. CVPR 2018

Method #2 - Sensor Fusion

● Establishes the ceiling of our method

Image
Image

EfficientNet - B0

Geometry transform

Resnet

Context

Depth Distribution

x

Scores Localization

Depth range image

EfficientNet - B0

+

2 layer CNN

Results #2 - Sensor Fusion

● Trained for 50 epochs, results reported on val split

Method mAP (↑) ATE (↓) ASE (↓) AOE (↓)

RGB only 0.22 0.52 0.16 0.15

RGB + LiDAR depth 0.37 0.44 0.15 0.15

Object Detection for Cars

Method #3 - PI for depth distribution

● Better depth detection leads to huge boost in performance

Image
Image

EfficientNet - B0 Geometry transform

Resnet

Context

Depth Distribution

x

Scores Localization
Depth range image

EfficientNet - B0 σ

𝓝(1,σ)

o

Loss=L_score + L_localization + α || σ ||^2

Method #3 - PI for depth distribution

● Expectations:
○ Faster training (Lambert et al., CVPR 18)
○ Performance improvement (Kamienny et al. ICLR 20)

Method mAP (↑) ATE (↓) ASE (↓) AOE (↓)

RGB only 0.134 0.547 0.153 0.189

RGB + LiDAR depth 0.180 0.492 0.156 0.203

RGB + PI (α=1e-3) 0.148 0.551 0.154 0.177

RGB + PI (α=1e-1) 0.135 0.544 0.150 0.198

RGB + PI (α=1e-4) 0.137 0.530 0.152 0.181

5 epochs

Method #3 - PI for depth distribution

10 epochs 50 epochs

Method mAP (↑) ATE (↓) ASE (↓) AOE (↓) mAP (↑) ATE (↓) ASE (↓) AOE (↓)

RGB only 0.191 0.541 0.153 0.150 0.221 0.522 0.159 0.147

RGB + LiDAR depth 0.244 0.474 0.152 0.138 0.372 0.450 0.160 0.146

RGB + PI (α=1e-3) 0.177 0.529 0.156 0.141 0.219 0.533 0.158 0.153

RGB + PI (α=1e-1) 0.173 0.516 0.157 0.177 0.217 0.537 0.161 0.156

RGB + PI (α=1e-4) 0.172 0.527 0.150 0.160 0.205 0.520 0.161 0.160

● Performance becomes worse at higher number of epochs

Visualizations - RGB only training

Visualizations - RGB + PI

Improvements to do

● Fix overfitting in RGB-only model and achieve improved performance

● Do multi-class training (help prevent overfitting too)

● Drill down into PI:

○ What are the statistics of the dropout values?

○ What are the regions where dropouts have high variance?

● Have a depth prediction loss?

● Try PI on an established 3D detection algorithm

Questions?

Plan for the remainder of the semester

Tasks Date

Training on full nuScenes using Huber Loss 11/06

Evaluation of mAP and other metrics (BEV or 3D detection?) 11/06

Experiment with other loss functions 11/13

Use a bigger ResNet in the Detect portion of the model (if feasible) 11/20

Training with LiDAR as privileged information 11/27

Performance Improvement

● Stereo-based Object Detection perform exceptionally well (e.g. Deep Stereo Geometry Stereo Network, Chen et al.)
○ AV datasets have very small overlap between cameras

● Use HD-Maps rasterized to BEV frame

● LiDAR as privileged information?
○ Force the LiFT part of the model to learn similar data as LiDAR input

Lift-SplatImages LiDAR+

Detect

x
ƛ

x
1-ƛ

BEV
Encoding

https://arxiv.org/abs/2001.03398

Baseline

The original OFT results are reported on the KITTI benchmark.

However, since we’re working with nuScenes, we decided to train and evaluate OFT on it. We ran the

following experiments for 100 epochs each:

● OFT on full nuScenes dataset: 700 scenes, ~21,000 samples

● OFT on mini nuScenes dataset: 10 scenes, ~300 samples

However, we noticed the results were very poor. We also noticed a lot of overfitting in the mini dataset.

We had the authors correct the bug and reran our experiment, but the trained model failed to detect any

objects.

We are therefore trying to replicate OFT results on the KITTI dataset itself as a sanity check.

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d

Proposal slides

Motivation

● 3D object detection in images is a hard problem:

lack of depth information

● AVs have a camera rig: can we use images from

multiple-cameras to help with lack of depth?
○ Can we generalize to arbitrary camera rigs?

Credits: Deep3DBox,
Mousavin et. al. CVPR 2017

Source: nuScenes Source: Lyft

https://www.nuscenes.org/nuscenes#overview
https://self-driving.lyft.com/level5/data/

Motivation

● 3D object detection in images is a hard problem:

lack of depth information

● AVs have a camera rig: can we use images from

multiple-cameras to help with lack of depth?
○ Can we generalize to arbitrary camera rigs?

Credits: Deep3DBox,
Mousavin et. al. CVPR 2017

Source: nuScenes Source: Lyft

https://www.nuscenes.org/nuscenes#overview
https://self-driving.lyft.com/level5/data/

Related Work

Lift-Splat-Shoot: Encoding Images from Arbitrary Camera Rigs by Implicitly Unprojecting to 3D

Source: Lift-Splat-Shoot, Philion et. al., ECCV 2020

Input:
RGB images, camera
intrinsics and
extrinsics

Output:
BEV representation

Input:
BEV representation

Output:
BEV segmentation
BEV planning

Related Work

Why lift-splat-shoot?

● Robustness built in:
○ Camera dropout
○ Arbitrary rig geometry

Source: Lift-Splat-Shoot, Philion et. al., ECCV 2020

Proposed Method

Source: Lift-Splat-Shoot, Philion et. al., ECCV 2020

Input:
RGB images

Output:
BEV representation

Input:
BEV representation

Output:
BEV object detection

Project Plan

● Action plan
○ Ask the authors for pretrained models; run it to reproduce lift-splat-shoot
○ Obtain BEV detection baselines for lidar-only and lidar+image methods
○ Add a detection network and train for detection task
○ [Optional] Utilize LiDAR data as privileged information
○ [Optional] Run 2D detection on mono-images and apply lift-splat to them too

● Dataset: nuScenes

● Compute resources: Personal machine, and Google Colab if needed

Thank you!

Presentation Discussion

● Compare with MV3D

● Compare with Panorama based methods (Panorama360)

● Project detections back in image to get 2D (or 3D detections)

Doubts

● Is the Lift, Splat module trained end-to-end with the motion planning (Shoot) part?

● If not, what loss is used to train it?

● If we were to use just Lift, Splat with an object detection loss, would it work? Or is the BEV

segmentation learnt because of the Shoot part? Will training in a multi-task manner where we

include object detection hamper the training?

● When do you plan on releasing the code? Will there be a pretrained model available?

Whacky ideas

● Get 2D detections in mono images; lift-splat the detections (as probabilistic 3D bounding boxes)

● Use LiDAR information as prior/privileged:
○ Before lift-splat
○ In the lift-splatted BEV frame

● Use HD maps in lift-splat to improve BEV transformation
○ If we use it, we become country specific

●

