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Abstract—Autonomous vehicles, or self-driving cars, as they
are commonly referred to, are generally equipped with a wide
array of sensors including, but not limited to cameras, RADAR,
and Light detection and ranging (LiDAR). One of the main uses
of data collected using these various sensor modalities is detecting
other vehicles on the road, pedestrians, stop signs, obstacles and
other objects of interest. These task comprise a small subset of
the broad domain of 3D object detection. Multiple methods have
been proposed to solve this task, which involve LiDAR-only and
image-only approaches, as well as methods that involve fusing
both. In the current paper, we address this particular task by
exclusively making use of image data without any inherent depth
information, obtained from cameras mounted at various locations
on the vehicle. We develop an RGB-only network to perform 3D
object detection, and then try to improve the performance by
using LiDAR only during training.

Index Terms—3D object detection, autonomous vehicles.

I. INTRODUCTION

The need for autonomous vehicles (AVs) arises from con-

cerns of safety and reliability [1]. It can also benefit individuals
with disabilities that may preclude them from driving cars
themselves, by providing them with mobility options that do
not involve relying on other people while also being cost
effective. It is also a compelling computer science problem as
it will bring us one step closer to artificial general intelligence.
It is an extremely complex task because of the inherently
dynamic nature of self driving in addition to the wide variety
of rules, regulations, traffic patterns and other environmental
variables that affect driving decisions. There is also no margin
for error. Accuracy is therefore paramount, and multiple forms
of redundancies need to be incorporated in order to account for
worst-case scenarios. Autonomous vehicles therefore employ
a diverse set of sensors such as cameras, LiDAR, and RADAR
[2].
One of the key components of the autonomous vehicle soft-
ware stack involves object detection. As mentioned in the
previous paragraph, there are various forms of input that are
available to perform this task. There are methods that rely
solely on LiDAR data, which is typically in the form of point
clouds, methods that try to perform object detection using just
RGB image data, and methods that try to combine data from
both these sources in order to increase performance. In the next
section, we will take a look at the LiDAR-only and camera-
only methods that have been proposed for object detection.
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II. RELATED WORK
A. LiDAR based methods

LiDAR has been the dominant sensor input for 3D object
detections by a large margin, and boasts of top performance
on various public benchmarks. Modern autonomous vehicles
employ multiple LiDAR scanners, relying heavily on them
because of the easy availability of depth information that is
absent in case of camera images.

Zhou et al. [3] kickstarted the excellent performance in
3D detection using VoxelNet by using a learned feature
encoder instead of hand-crafted transformations of LiDAR
point clouds. They divide the 3D space into voxels, and
use 3D convolutions to perform detection in an end-to-end
fashion. There are multiple works which build upon the ideas
introduces in VoxelNet.

PointPillars [4] identifies the bottleneck that 3D convolu-
tions pose in methods like VoxelNet [3], and aims to improve
upon that by instead discretizing the point cloud in only the
x-y plane, enabling use of 2D convolutions. This allows the
authors to achieve a significant improvement in speed over
methods that use 3D convolutions. It discretizes point clouds
in the x-y plane to form ‘pillars’ of points. The authors then
use a simplified PointNet [5] to transform this data into a
representation suitable for use with 2D Convolutional Neural
Networks (CNNs), which they then use to extract higher-level
features. These features are then used as input to a detection
head to predict 3D bounding boxes for objects.

Qi et al. [6] introduce a very different processing phi-
losophy. Instead of discretizing the input point cloud 3D
space into voxels or pillars of points, they directly operate
on 3D points by associating a vote for each LiDAR point and
borrowing ideas from classical computer vision such as the
Hough transform and voting.

Autonomous vehicles, however, generate data that is inher-
ently dynamic in nature. We need to be able to handle not
just static point clouds, but sequences of them. FlowNet3D
[8] addresses this very problem of scene flow, which tries to
predict the motion of points in 3D space. The authors propose
a novel end-to-end trainable architecture that looks at point
clouds at consecutive time steps to predict flow vectors. While
FlowNet3D works by considering consecutive frames of point
clouds and estimating flow vectors between them, MeteorNet
[O] generalizes to longer sequences of point cloud data.



Fig. 1. Deep3DBox [7], one of the methods that performs 3D object detection
using a single RGB image.

B. Camera-based methods

3D object detection on RGB images is a challenging task
owing to the lack of depth information. There have been
improvements in single-image based methods but they still
fall behind single-image 2D object detection and LiDAR
based 3D detection. Mono3D [10] uses ground plane prior
and constructs proposals in 3D which are projected to 2D
images. Deep3DBox [7] first estimates the object orientation
and dimensions, and then estimates the 3D bounding box by
optimizing in the constraint provided by 2D bounding boxes.

Pseudo-LiDAR [11] is a seminal work where the authors
argue that the huge performance gap between object detec-
tion from camera images and LiDAR scans is not the data
quality but the data representation. They argue that advances
in monocular and stereo depth estimation has made depth
maps pretty accurate, so lack of depth cues in 2D images
is not the main source of performance degradation. They
argue that sequence of 2D convolutions is a bad choice for
performing 3D detection because the neighborhoods in 2D
images can have wildly different depth images. As a result,
they transform the 2D images into pseudo-LiDAR point clouds
using depth estimation, and use 3D detection techniques on the
transformed representation. The performance jump from 22%
to 74% is a huge one and has influenced a lot of subsequent
work.

Roddick et al. [12] use a similar reasoning about the flaws of
perspective image-based representation. However, their choice
of the intermediate representation is different: they directly
map the input images to a birds-eye-view based feature space.
In contrast to [ 1], they do not rely on explicit depth recovery
but argue that their network directly learns to map image pixels
to appropriate gird locations in the BEV frame.

Philion and Fidler [13] propose Lift-Splat-Shoot, which is

a segmentation and motion planning network which works
on arbitrary camera rigs. But it follows similar philosophy
of intermediate representation in BEV. The first half of their
architecture proposes features and a probabilistic depth vector
for each pixel in the input image. This is in contrast with OFT
[12], and the features are then smeared over the BEV frame
according to the probabilistic depth. Although they use the
BEV representation for a different end goal, the similarities
with OFT [12] provides an alternate feature encoder which
can work well for 3D detection.

More recently proposed methods such as MonoDIS [14]
aim to tackle the problem of monocular 3D object detection
by balancing the contribution of various parameters in the loss
functions, which typically vary significantly in magnitudes and
require careful weighting, while also precluding stage-wise
training. They achieve this through a novel transformation
that ‘disentangles’ these dependencies between the parameters,
allowing them to train their network end-to-end, while also
retaining the overall nature of the loss function. They further
propose a novel signed Intersection-over-Union (IoU) based
metric that they use to demonstrate improved 2D detection
performance. They also use self-supervision to learn detection
confidence score prediction for 3D bounding boxes.

Another recent method, CenterNet [15], represents objects
using center points of their bounding boxes. The authors use
a keypoint estimator to detect the center point of an object
bounding box, and then regress to the object’s properties
such as size, 3D location, orientation, and pose. Their method
does not require non-maximal suppresion and is end-to-end
differentiable.

C. LiDAR + Camera Sensor Fusion Methods

Fusing LiDAR and RGB data has also been a common
approach to achieve cutting-edge performance. MV-3D [16]
uses BEV representations produced from LiDAR scans to
generate 3D object proposals and projects them to other sensor
data. AVOD [17] generates proposals on the fused sensor
data. These methods are more accurate than methods that rely
solely on a single sensor modality as they have strictly more
information than the latter.

The LiDARSs used in autonomous vehicles, however, tend to
be extremely expensive [2]. Therefore, it is worthwhile con-
sidering purely camera-based methods as well, since cameras
tend to be significantly cheaper and more easily available.

Fig. 2. Different camera rig configurations. The left part of the image depicts
a car with 6 cameras which was used to create the nuScenes dataset [18],
whereas the camera rig for the car in the right half of the image contains 7
cameras, and was used to create the Lyft level 5 database [19]



III. PROPOSED METHOD
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Fig. 3. Overview of our proposed method. Source: [13]

The main challenge posed by monocular 3D object detection
is the inherent lack of depth information. Even for autonomous
vehicles that have camera rigs, it is difficult to obtain depth
information using multi-view stereo owing to the lack of
significant overlap between the camera frustums. Different cars
also have different camera rig configurations. We build our
monocular-image based network on the Lift-Splat-Shoot [13]
architecture. This model performs the geometry transform as
suggested by pseudo-LiDAR [ 1] and confirmed by Ma et al.
[20]. We call our model Lift-Splat-Detect (LSD).

An overview of the proposed method is provided in Figure
3. The ‘Lift* component of the network outputs the categorical
distribution over depth and a context vector to transform each
input image from its local 2D coordinate system to a shared
3D coordinate system. The ‘Splat® component performs the
geometry transformation using camera extrinsics and intrinsics
to map each per-image frustum-shaped point cloud generated
by the ‘Lift’ component onto the BEV plane. The ‘Detect*
network works on this intermediate representation to perform
object detection. We think this will be more powerful than
working on single-3D images and will not require explicit
depth information like Pseudo-LiDAR [I1]. Using this ap-
proach has the added benefit of robustness, as it works even
in cases of camera dropout and can be generalized to arbi-
trary camera rigs. The network architecture for our proposed
monocular-only network is presented in Figure 4.
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Fig. 4. Our proposed pipeline, Lift-Splat-Detect (LSD).

Recent methods for image-based object detection using
stereo for depth estimation show performance at-par with
common LiDAR based methods [21]. This suggest that accu-
rate depth information is highly correlated with the detection
performance. To understand the effect of oracle depth on
our network architecture, we propose a sensor-fusion between
RGB images and LiDAR. The depth (z-coordinate) from

LiDAR is encoded as a sparse single-channel range image.
This new network is called LSD-LiDAR, and the network
architecture is presented in Figure 6.

Depth Distribution

Localization

Scores

Fig. 5. LSD-LiDAR: Lift-Splat-Detect, with access to LiDAR depth infor-
mation.
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Finally, we plan to leverage the LiDAR sensor data as
privileged information (PI). Learning under privileged infor-
mation (LUPI) setup, proposed by Vapnik et al. [22], has
privileged information available only during training. The
network has to learn the correlation between features encoded
from the regular inputs and privileged information, so as
to perform well during inference time when the privileged
information is absent. We follow the heteroscedastic dropout
approach introduced by Lambert et al. [23] and corroborated
by Kamienny et al. [24]. We hope to see an improvement
in the training sample efficiency or final performance using
privileged information. During inference time, the PI branch
and the dropout can be safely ignored and hence the model
still remains an image-only model.
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@

Fig. 6. Using PI for Heteroscedastic Dropout: x is the RGB image, and x*
is the LiDAR PI. The samples from Gaussian distribution serves as dropout
for the main tower of our network. Source: [23]
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We propose to use the LiDAR information to improve the
depth distribution prediction component of the LSD model.
This model is called LSD-PI. This choice is guided by the
limited compute resource and evidence improvements in depth
prediction translating to excellent detection performance [20].
The network architecture is illustrated in Figure 7. In this
setup, there is an additional regularization component on the
predicted standard-deviations from PI, weighted by a.

IV. EXPERIMENTS

We plan to use the nuScenes dataset [18], performing our
experiments on the full dataset. As we are constrained by
the compute resources, we plan to train our 3 models till 50
epochs.

We initially planned to use OFT [I2] as our baseline,
owing to the similarities mentioned in the previous section,
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Fig. 7. LSD-PI: Lift-Splat-Detect, using LiDAR as privileged information.

and retrain it for the same number of epochs: 50. However,
while training on nuScenes, we observe poor results and on
debugging found a bug in the author’s code. The object mask
was incorrect with the loss being calculated across the entire
image instead of just the ground truth bounding boxes, which
we subsequently corrected.

We therefore decided to first reproduce the authors’ results
on the KITTI benchmark as reported in their paper as a
sanity check before retrying on the full nuScense dataset [18].
However, even when using the corrected code provided by
the authors, using their default parameters, we were unable to
reproduce their results. Given the lack of time and our limited
computational resources, we decided to use CenterNet [15]
and MonoDIS [14] as our baselines, reported on the nuScenes
leaderboard, since these were the top two performing camera-
only methods at the time that we were conducting run our
experiments.

We next trained the LSD model, for 3D object detection
instead of segmentation. For the score component output by
the Resnet, we experimented with Huber loss, Focal loss
(as used in CenterPoint [25]), as well re-weighting negative
samples for the Huber loss (similar to OFT [12]). We obtained
the best results when using the latter. Localization involves
angel, dimension, and position loss terms, for which we used
Huber loss evaluated on just the anchors that had an overlap
with the ground truth. We only train our model to detect
cars and report results on the validation split. The preliminary
qualitative results are presented in Figure 8. A small video
snippet is available at the following link: modified Lift-Splat
on nuScenes mini dataset. While the results seemed promising,
we noticed that our model suffered from overfitting and failed
on larger distances.

Our best set of hyperparameters obtained after tuning are:
learning rate of le~7 without any scheduling, score weight of
2.5 reweighting negative samples using a value of 0.1, and
1 for the localization terms, and a weight decay of le~7. It
takes our model 30 hours to train for 50 epochs. To report our
results, we use the following metrics:

« mAP: Mean average precision,

o ATE: Average translation error, obtained by computing
the 2D Euclidean distance between bounding box centers
in meters,

o ASE: Average scale error, obtained by aligning bounding
box centers and orientations and computing (1 - IoU),

o AOE: Average orientation error, obtained by calculating
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Fig. 8. A snapshot of our preliminary results for the modified Lift-Splat
architecture. The yellow regions represent Gaussians centered around objects.
The left image is the prediction made by our model, whereas the right image
is the ground truth data.

the smallest difference in yaw angles between ground
truth and prediction, in radians.
In all the tables below, the arrows next to the metrics that point
downward indicate that lower values are better, whereas arrows
pointing upwards are used to signify that higher values indicate
better results. Table I describes our results after training solely
on monocular images for 50 epochs.

Method mAP (1) | ATE (J) | ASE () | AOE ()

LSD* 0.22 052 0.16 0.15

CenterNet [15] 0.54 047 0.14 0.09

MonoDIS [14] 043 0.61 0.15 0.07
TABLE |

COMPARISON OF LSD (OUR METHOD) WITH OUR TWO BASELINES.

As can be observed, the results we obtained were signif-
icantly worse than our baselines. On inspecting further, we
found that this was due to overfitting, particularly in the object
dimensions. We trained the model upto 300 epochs, and the
overfitting becomes more severe, with lowest loss around 50
epochs.

Even though these results were sub-optimal, we decided
to continue and experiment with LSD and LSD-PI for this
project. This decision was taken in interest of time and
resource constraints. We first establish a ceiling for LSD-PI
using LSD-LiDAR, as LSD-LiDAR as LiDAR sensor infor-
mation available during both training and inference. We report
these results in Table II. We note a significant performance
improvement in the mAP and ATE metrics, which were
expected because of the additional depth information available.

Method mAP (1) | ATE () | ASE (J) | AOE ()
LSD 0.22 052 0.16 0.15
LSD-LiDAR 037 0.44 0.15 0.15
TABLE II
RESULTS OF SENSOR FUSION ON VALIDATION SPLIT, TRAINED FOR 50
EPOCHS.

We next train our third model, LSD-PI, on the full dataset.
We noticed a significant improvement in performance com-
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pared to our first model, LSD, when trained for 5 epochs.
These results can be found in Table III. We report results
for 3 values of the regularization of the standard deviations
predicted by the PI: high values of o means that PI won’t be
used by the network, and low values of o will mean that we
suffer during inference as we rely on the PI heavily.

Method mAP (1) | ATE (1) | ASE (J) | AOE ()
LSD 0.134 0.547 0.153 0.189
LSD-LiDAR 0.180 0.492 0.156 0.203
LSD-PI (o = le~ 1) 0.135 0.544 0.150 0.198
LSD-PI (a = 1le—3) 0.148 0.551 0.154 0.177
LSD-PI (a = 1e= %) 0.137 0.530 0.152 0.181
TABLE 111

COMPARISON OF LSD, LSD-LIDAR, AND LSD-PI, 5 EPOCHS

Method mAP (1) | ATE (J) | ASE () | AOE ()
LSD 0.191 0.541 0.153 0.150
LSD-LiDAR 0.244 0474 0.153 0.138
LSDPL(a=1le 1) | 0.173 0516 0.157 0.177
LSD-Pl (a = 1e- %) | 0.177 0.529 0.156 0.141
LSDPl (a = 1le %) | 0.072 0.527 0.150 0.160
TABLE IV

COMPARISON OF LSD, LSD-LIDAR, AND LSD-PI, 10 EPOCHS

Method mAP (1) | ATE (J) | ASE (J) | AOE ()
LSD 0.221 0522 0.159 0.147
LSD-LiDAR 0372 0.450 0.160 0.146
LSDPl (@ =1le 1) | 0217 0.537 0.161 0.156
LSDPI (a = e %) | 0219 0.533 0.158 0.153
LSDPI (a = le %) | 0205 0.520 0.161 0.160
TABLE V

COMPARISON OF LSD, LSD-LIDAR, AND LSD-PI, 50 EPOCHS

We report our results for 10 epochs and 50 epochs in Tables
IV and V respectively. We lose the performance gains in mAP
on both these results. Improvements in ATE still hold till 10
epochs, but disappear at 50 epochs.

This might be caused due to overfitting, but we need to
perform thorough investigation. PI looks promising but we
need to investigate the cause for dissipation of the gains. We
report the qualitative results of our final experiments in Figure
9.

V. FUTURE WORK

Based on the results we have obtained so far, we intend to
first tackle the issue of overfitting in our RGB-only model.
We aim to include more aggressive data augmentation. In the
current set of experiments, we have trained our model to only
detect cars. We want to transition to multi-class training since
we believe this will also enable us to mitigate the issue of
overfitting. We next want to examine the use of privileged
information in more detail, digging deeper into the statistics
of the dropout values, as well as probe regions where the
dropout values have high variance to obtain more clarity about
the training process. In addition to these experiments, we also
want to observe the effect of adding a depth prediction loss

to our current framework, and establish another baseline for
training with privileged information by using it in conjunction
with an established 3D detection algorithm.
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