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Abstract

Laparoscopy images suffer from artifacts like surgical smoke, specular highlights, and noise.

These artifacts hinder visibility, and degrade post processing (e.g. segmentation). There is a

lack of literature on smoke removal in laparoscopy images, and to the best of our knowledge,

no prior work on jointly tackling these three artifacts. We tackle these degradations as a

novel unified Bayesian inference problem. We use probabilistic graphical models and employ

sparse dictionary priors and novel image intensity distribution priors. We obtain maximum-

apriori probability (MAP) estimate by expectation maximization and use variational Bayesian

factorization to overcome the encountered intractabilities. Results on simulated and real-world

laparoscopy images show that our joint optimization strategy outperforms the state-of-the-art.

Index terms — Laparoscopy, smoke removal, specular highlights removal, denoising,

variational Bayes, EM, graphical models, distribution matching.

iv



Table of Contents

Abstract iv

List of Figures vii

1 Introduction 1

2 Literature Survey 3

2.1 Speckle removal in laparoscopy images . . . . . . . . . . . . . . . . . . . . . 3

2.2 Dehazing in outdoor images . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Desmoking in laparoscopy images . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Formulation 6

3.1 Sparse coding over a dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Image intensity distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Kernel density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 MRF model on image X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Image formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 Prior on transmission map T . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Estimation 14

4.1 Variational Bayesian expectation maximization . . . . . . . . . . . . . . . . . 15

4.1.1 Expectation step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.2 M step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Results 18

5.1 Experiment details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



Table of Contents vi

5.2 Synthetic corruption on simulated data . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Synthetic corruption on high quality laparoscopy images . . . . . . . . . . . . 20

5.4 Real world laparoscopy images . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Conclusion and Future Work 32

A Optimal factors for transmission map T 33

B Optimal factors for codes S 35

List of Publications 41

Acknowledgements 42



List of Figures

3.1 Learning Prior PDFs on Color. Empirical histograms (bar plots) and fitted

parametric PDFs (solid curves) in uncorrupted laparoscopy images, for 3 channel

components: (a) gamma Γ1, (b) Gaussian G2, (c) Gaussian G3. . . . . . . . . 9

5.1 Validation on Simulated Data. (a) Phantom (color component values ∈

[0, 255]). (b) Corrupted phantom with smoke, specularities, and low noise (σ

= 5). Results of processing image (b), using: (c) our method; (d) bilateral

filter denoising followed by dehazing [1] followed by inpainting; (e) adaptive

filtering [2] followed by inpainting. . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Quantitative Validation on Simulated Data. Boxplots for RRMSE (a), QILV

(b), SSIM (c), and chi-squared distance between histograms (d). In column 1,

results are grouped by smoke level and in column 2, grouped by noise level. . . 22

5.3 Validation on Laparoscopy Data. (a) High quality laparoscopy image (color

component values ∈ [0, 255]). (b): (a) corrupted synthetically with smoke,

specularities, and moderate noise (σ = 5). Results of processing image (b)

using: (c) our method; (d) bilateral filter denoising followed by dehazing [1]

followed by inpainting; (e) adaptive filtering [2] followed by inpainting. Zoomed

insets of (a), (b), (c), (d) are (a1), (b1), (c1), (d1). . . . . . . . . . . . . . . . 23

5.4 Validation on Laparoscopy Data. (a) High quality laparoscopy image (color

component values ∈ [0, 255]). (b): (a) corrupted synthetically with smoke,

specularities, and moderate noise (σ = 5). Results of processing image (b)

using: (c) our method; (d) bilateral filter denoising followed by dehazing [1]

followed by inpainting; (e) adaptive filtering [2] followed by inpainting. Zoomed

insets of (a), (b), (c), (d) are (a1), (b1), (c1), (d1). . . . . . . . . . . . . . . . 24

vii



List of Figures viii

5.5 Validation on Laparoscopy Data. (a) High quality laparoscopy image (color

component values ∈ [0, 255]). (b): (a) corrupted synthetically with smoke

and specularities. Results of processing image (b) using: (c) our method;

(d) bilateral filter denoising followed by dehazing [1] followed by inpainting;

(e) adaptive filtering [2] followed by inpainting. . . . . . . . . . . . . . . . . . 25

5.6 Validation on Laparoscopy Data. (a) High quality laparoscopy image (color

component values ∈ [0, 255]). (b): (a) corrupted synthetically with smoke,

specularities, and moderate noise (σ = 5). Results of processing image (b)

using: (c) our method; (d) bilateral filter denoising followed by dehazing [1]

followed by inpainting; (e) adaptive filtering [2] followed by inpainting. Zoomed

insets of (a), (b), (c), (d) are (a1), (b1), (c1), (d1). . . . . . . . . . . . . . . . 26

5.7 Quantitative Validation on Laparoscopy Data. Boxplots for RRMSE (a),

QILV (b), SSIM (c), and chi-squared distance between histograms (d). In

column 1, results are grouped by smoke level and in column 2, grouped by noise

level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.8 Results on Real World Laparoscopic Image. (a) Observed image. Results of

processing image (a) using: (b) denoising using bilateral filtering followed by

dehazing [1] followed by inpainting; (c) our method; (d) adaptive filtering [2]

followed by inpainting. Zoomed insets of (a), (b), (c) are in (a1), (b1), (c1) and

(a2), (b2), (c2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.9 Results on Real World Laparoscopic Image. (a) Observed image. Results

of processing image (a) using: (b) denoising with bilateral filter followed by

dehazing [1] followed by inpainting; (c) our method; (d) adaptive filtering [2]

followed by inpainting. Zoomed insets of (a), (b), (c) are in (a1), (b1), (c1). . . 29

5.10 Results on Real World Laparoscopic Image. (a) Observed image. Results

of processing image (a) using: (b) denoising with bilateral filter followed by

dehazing [1] followed by inpainting; (c) our method; (d) adaptive filtering [2]

followed by inpainting. Zoomed insets of (a), (b), (c) are in (a1), (b1), (c1). . . 30

5.11 Results on Observed Laparoscopic Images. (a) Observed Image. Results

of processing image (a) using: (b) denoising with bilateral filter followed by

dehazing [1] followed by inpainting; (c) our method. . . . . . . . . . . . . . . 31



Chapter 1

Introduction

Laparoscopy is a popular minimally invasive surgery technique in which operations are per-

formed by inserting equipments through small incisions. Laparoscopy surgery has advantages

like less pain and hemorrhaging, shorter recovery times over open surgical procedures. The key

equipment is a laparoscope, an optical imaging instrument which relays the visuals on a screen.

Another main equipment is a cold light source to illuminate the area of operation.

The closed nature of laparoscopy surgery presents some challenges. The images can

get severely corrupted with specular highlights [3, 4], surgical smoke [5], and noise. Specular

highlights result from strong reflection of the light source by body fluids like blood and mucus.

Speckles interfere with post-processing like segmentation [6, 7] and tracking [8]. Electrical

cauterization of a tissue generates surgical smoke, which hinders visibility for surgeons and

robots alike. Noise is present in all optical imaging systems and a laparoscope is no exception.

Chapter 2 covers the related literature in these areas. Recent works in specular highlight

removal in laparoscopy use isotropic diffusion and do not preserve texture and edges. There is

lack of literature for smoke removal in laparoscopy images, and hence we look into haze removal

in outdoor images. These methods do not employ any special properties of laparoscopy images,

which can be imposed due to the smaller variation in this class of images.
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In Chapter 3, we will introduce the variables in the system and the image formation

model. We use probabilistic graphical models to design prior on the variables. The prior has

components like sparse coding on a dictionary, and a novel probability distribution matching

penalty. We formulate a unified Bayesian inference problem in Chapter 4, which is solved using

the expectation-maximation (EM) algorithm. We introduce variational Bayesian approximations

to overcome the analytical intractability in the optimization scheme.

We present validationmetrics and results of our algorithm compared to the state-of-the-art

in Chapter 5. We conclude and discuss some future directions in Chapter 6.



Chapter 2

Literature Survey

To the best of our knowledge, no existing work tackles smoke, specular highlights, and noise in a

joint setting. We will cover these three and some related problem separately. First, we will look

into specular highlights removal in laparoscopy images, which is mostly tackled as inpainting

problem using some form of averaging. Inpainting is a process of filling in missing information,

usually using true information in the surroundings. Then, we will cover dehazing, which is haze

removal in outdoor images and bears similarity with desmoking in laparoscopy images. This

will be followed with desmoking itself. We will not cover denoising as an independent domain.

2.1 Speckle removal in laparoscopy images

Arnold et al. [9] use a 2-step inpainting process. In the first step, they fill in the missing data

with the centroid of available data in the local surroundings and perform strong smoothing using

a Gaussian kernel. The smooth image output of the first step and the original image is combined

using a weight mask in the second step. The weight mask has high weights near the speckles and

decays non-linearly with distance. This results in a gradual transition between original image

and the smooth median filtered image. The results however, are smooth and lack texture. This

is expected because median filtering is not suitable to interpolate texture.

3
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Isotropic color diffusion is used by Saint-Pierre et al. [4]. They use discrete convolutions

with a kernel repeatedly until convergence is reached. The results, however, do not maintain

edges and sharp texture. This is expected from an isotropic diffusion process. Stoyanov and

Yang [3] use temporal non-rigid registration to obtain pixel values lost due to speckles. The

location of speckles shift with time, and hence missing data in one frame may be present in other

frames. Interpolation is performed using control points obtained after registration of frames

captured at different instances. This method is non-temporal in nature, and also the averaging

leads to over-smooth inpainting.

2.2 Dehazing in outdoor images

Outdoor images, particularly of landscapes are often plagued by haze. Haze can be natural

(fog) or artificial due to pollution. Haze corrupts the color of image, and when present in large

concentration, it can completely obscure the subjects. The effect of haze is modeled by a linear

combination of object’s radiance and haze color [10]. The following equation, ubiquitous in

literature, captures the effect of haze

Yi = TiXi + (1− Ti)A (2.1)

where at pixel location i, Yi is observed image pixel, Ti ∈ [0, 1] is the haze transmission

coefficient, Xi is radiance of the scene sans haze, and A is the airlight (considered constant for

all pixels).

An important property which is exploited quite often is that the haze transmission coef-

ficient {Ti} is directly proportional to scene depth, and is hence spatially smooth. Fattal [11]

uses Markov random field (MRF) to model the transmission map. Squared difference for four

nearest-neighbors for each pixel location is penalized to enforce spatial regularity. Along with

MRF for spatial smoothness, Tan [12] also increases image contrast by optimizing for the number

of edges in the image. Both the methods do not utilize any information about the distribution of

colors in the image.
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He et al. [1] observe a statistical property that most local patches in outdoor haze-free

images contain some pixel that has low intensity in at least one color channel. Infact, the lowest

intensity in a local patch is called the dark channel and serves as an estimate for the transmission

coefficient at that location. Soft matting is used to obtain a smooth final estimate of transmission

map in [1]. Pang et al. [13] use adaptive patch size and replace the soft matting step with guided

filtering. Gibson and Nguyen [2] calculate the dark channel and then apply adaptive wiener

filter to smooth out the transmission map. Matlin and Milanfar [14] argue that the dark channel

will be susceptible to outliers resulting from noise. They propose an iterative non-parametric

kernel regression. The optimization is performed by alternating between minimization in terms

of the transmission map and the uncorrupted image estimate to obtain simultaneous dehazing

and denoising. While the dark channel principle is also applicable to laparoscopy images, we

can derive more stringent properties to work with. For example, in laparoscopy images, the red

channel usually contains the maximum value at each pixel out of the three color channels.

124 images are used by Joshi and Cohen [15] to generate a final image performing

weighted averaging of transitionally aligned images. Mt. Rainer, the subject of interest in the

paper, has large white glaciers which do not obey the local dark channel property. They also

assume airlight constant for a scan-line and not for the whole image and compute the dark

channel value per scan-line. This is then used to compute the transmission map and dehaze the

image. This method is impractical for laparoscopy as it requires large number of images for a

subject.

2.3 Desmoking in laparoscopy images

Kotwal et al. [16] use MRFs to model the image and smoke transmission map and perform

joint optimization for smoke and noise removal. They penalize distance between the empirical

distribution and template distribution of image intensities and combine it with Huber penalty in

local patches to create a prior on the uncorrupted image. Spatial smoothness prior is used on

transmission map.



Chapter 3

Formulation

We start this chapter with the concept of sparse coding, which will be used in our design of

prior probability distribution on the uncorrupted image estimate X. We then introduce a new

colorspace and introduce a novel penalty function which matches two cumulative distribution

functions (CDFs). We then design an MRF prior on the X. This will be followed by the image

formation model and then design of the remaining variables in the system.

Our notation scheme is to use upper case for random variables and lower case for their

specific instance. Bold fonts denote a set of random variables over the whole image, and normal

fonts denote an element from that set.

3.1 Sparse coding over a dictionary

Given a data vector W , a linear decomposition over the dictionary D in terms of coding S is

expressed as

W ≈ DS (3.1)

6



3.1 Sparse coding over a dictionary 7

In sparse coding [17], we want to represent an input vector using as few atoms of

the dictionary as possible, i.e. S should have only a few entries with significant magnitude.

Olshausen and Field [18] demonstrated that the dictionary atoms learnt via sparse coding bears

similarity to processing in brain’s visual cortex by learning features which are localized, oriented,

and bandpass. A common way to enforce sparsity is to regularize the codes. A penalty function

which uses regularization is of the form

J(D, S) = ||W −DS||22 + λ
∑
j

f(Sj) (3.2)

where λ is called the regularization constant and controls the trade-off between sparsity and

reconstruction accuracy, and f typically is a strictly increasing function of the absolute value of

its argument and hence favor sparsity.

Sparse coding using L1 regularization, i.e. f(Sj) = |Sj|, is used to perform digit

recognition in [19]. Non-negative sparse coding [20] constrains the dictionary and codes to be

non-negative. The choice of sparsity function is f(Sj) = |Sj| = Sj . Mairal et al. [21] propose

an online algorithm for dictionary learning in sparse coding framework using L1 regularization.

They use least angle regression to solve the sparse coding problem for a given dictionary. Their

algorithm and accompanying code provide a significant speedup for learning a dictionary on

large datasets.

The L1 regularization problem can be approximated by an iterative reweighted least

square optimization algorithm. The core of the iterative scheme is a weighted least square

problem, which is described in the following text. Given a dictionary D and input vector W ,

the weighted least square optimization problem and its solution are

S∗ = arg min
S
||W −DS||22 + λ||ΓS||22 (3.3)

= (DᵀD + λΓᵀΓ)−1 DᵀW (3.4)

where Γ is the weight matrix. This core optimization scheme is used iteratively in iterative

reweighted least squares algorithm, where in each step the weighted L2 regularized least square
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problem is solved. It can be used to solve L1 regularized least square problem when the weights

in each iteration are chosen to be inverse of the absolute value of the current estimate of the

coding [22]. If Sm is the estimate before iterationm, then the next estimate will be

Sm+1 = arg min
S
||W −DS||22 + λ

∑
j

1

|Sm
j |

(Sj)
2 (3.5)

This iterative method of fixing the weights and solving a weighted L2 problem runs until

convergence.

3.2 Image intensity distribution

Surgical smoke is generally gray in color. It perturbs the color in the image and hence the

overall distribution of colors. We need a model distribution for pixel intensities of uncorrupted

high quality laparoscopy images to compare the observed image with. A distribution in a 3

dimensional colorspace will be the best fit on the data. But it gives rise to high computational

complexity, and also no generic distribution fits the laparoscopy dataset. So, we consider

modeling a distributions along each of the three color channels independently.

The channels in the RGB space exhibit very high correlation and modeling the three

channels independently is a poor choice in this colorspace. Hence, we use a data-adaptive

decorrelated colorspace [23]. We first transform the data from RGB space to LMS space, as the

latter is closely related to human perception. We then calculate the eigenvectors in the LMS

space and use them as the basis vectors for the new space, which we call lαβ space. The final

transformation is 
l

α

β

 =


0.3568 0.8413 0.5304

0.0760 −0.2006 0.1239

0.2267 0.3574 −0.6512



R

G

B

 (3.6)

The cross-correlation between channels in RGB space is [0.96, 0.99, 0.94] and that in lαβ

space is [0.62, 0.63, 0.81]. The new space has a clear advantage when we model the intensity
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(a) (b) (c)

Figure 3.1: Learning Prior PDFs on Color. Empirical histograms (bar plots) and fitted
parametric PDFs (solid curves) in uncorrupted laparoscopy images, for 3 channel components:
(a) gamma Γ1, (b) Gaussian G2, (c) Gaussian G3.

distribution channel-wise and independent of other channels. We use a Gamma distribution to

fit the l channel and Gaussian distributions to fit α and β channels respectively. The empirical

distributions and the model fits are illustrated in Figure 3.1

3.3 Kernel density estimation

Kernel density estimation (KDE) is a non-parametric method of estimating the probability

density function. Let w = (w1, w2, ..., wn) be i.i.d. samples from a probability distribution.

The kernel density estimate is

fw(b) =
1

nh

n∑
i=1

K

(
b− wi

h

)
(3.7)

whereK(.) is a kernel (which takes non-negative values, integrate to one, and has a zero mean),

and h > 0 is the bandwidth and controls the trade-off between bias and variance of the estimator.

We will use a Gaussian kernel due to its mathematical property like differentiability. Due to our

choice of Gaussian kernel, we can use the rule of thumb estimate [24] for bandwidth using the

sample standard deviation σ̂. The rule of thumb estimate is

h =

(
4σ̂5

3n

) 1
5

(3.8)
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Wewill now derive the CDF estimator Fw (·) and its gradients using the Gaussian kernel.

fw(b) =
1

nh
√

2π

n∑
i=1

exp

(
−(b− wi)

2

2h2

)
(3.9)

Fw(b) =

∫ b

l=−∞
fw(l) dl (3.10)

∂fw(b)

∂wi

=
1

nh
√

2π
exp

(
−(b− wi)

2

2h2

)
(b− wi)

h2
(3.11)

∂Fw(b)

∂wi

=

∫ b

l=−∞

∂fw(l)

∂wi

dl (3.12)

We will formulate a novel penalty which compares an empirical CDF Fw with a template

CDF F ref. Our formulation is motivated by CDF matching. We map fixed set of points B under

the CDF matching transform from empirical to template CDF, and penalize squared difference

of the set of output points with the input. When the two CDFs match, the outputs will be the

same as input points and hence the penalty will be zero. The penalty function and its gradient

with respect to a point wi in w are

Jdist(w) =
∑
b∈B

{
b−H

(
b;Fw, F ref)}2 (3.13)

∂Jdist(w)

∂wi

= 2
∑
b∈B

{
b−H

(
b;Fw, F ref)} ∂H (b;Fw, F ref

)
∂wi

(3.14)

where H (·) evaluates the mapping of a point b under CDF matching transform between two

distributions. The function will have gradients with respect to wi via the empirical CDF. The

function and its gradient are

H
(
b;Fw, F ref) =

(
F ref)−1 (Fw (b)) (3.15)

∂H
(
b;Fw, F ref

)
∂wi

=
∂
((
F ref
)−1

Fw (b)
)

∂Fw (b)

∂Fw (b)

∂wi

(3.16)
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3.4 MRF model on image X

The uncorrupted image containing I pixels is modeled by an MRF X := {Xi}Ii=1, where

Xi ∈ [0, 1]3 is a vector of RGB values at each pixel. We will define potential functions on

cliques of this MRF and use it as prior probability on X. We use the sparse coding prior

to preserve texture and remove noise, and image intensity distribution prior to enforce color

statistics. The neighborhood system NX is a fully connected system.

Using the kernel density estimation based penalty function (Equation (3.13)), we define

potential function on the clique containing all the pixels in the image. The expression for the

same is

Jdist(X) =
3∑

i=1

∑
b∈Bci

{
b−H

(
b;FX

ci
, F ref

ci

)}2 (3.17)

where Bci is a fixed set of points in channel ci. The colorspace of operation is lαβ introduced

in Section 3.2.

We will use L1 regularized sparse coding on full patches (i.e. patches fully contained in

the image) of size ḿ × ḿ of X as the second penalty function. We define potentials on each

square clique of sizem×m, wherem := 2ḿ−1. This translates to a sparse coding cost penalty

on full patches {X̄i}I
′

i=1, which is defined as

Jdict (X,S) =
I′∑
i=1

‖X̄i −DSi‖22 + λ‖Si‖1 (3.18)

where D := {Dj}Jj=1 is a fixed dictionary, learnt from a training set. The value of λ is fixed by

a heuristic mentioned in [21].

The prior probability on X is defined as

P (X) =

∫
S

exp (−E (X,S)) dS

Z
(3.19)
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where E (X,S) is the Gibbs energy function, given by

E (X,S) = γ1Jdict (X,S) + γ2Jdist (X) (3.20)

and Z is the normalization constant. γ1, γ2 ∈ R+ are free parameters.

3.5 Image formation

The artifacts are captured in a 3 step fashion. In this section, i denotes the pixel location.

Equation (3.21) captures the effect of speckles using a binary speckle map R, where Ri = 1

denotes the presence of speckle at pixel i. Equation (3.22) captures the smoke using transmission

coefficient Ti ∈ [0, 1]. To capture noise, an i.i.d. zero mean Gaussian ηi with standard deviation

σ is added at each pixel. Y is captured and available for processing. The equations are

Zi = (1−Ri)Xi +RiKspec (3.21)

Yi = TiZi + (1− Ti)Ksmoke + ηi (3.22)

where Kspec and Ksmoke are speckle and smoke color respectively.

Over all pixels, X is an uncorrupted image, which we want to estimate. Y is the

observed image, T is the smoke transmission map, and R is the speckle map. Kspec and Ksmoke

are considered constant across pixels.

3.6 Prior on transmission map T

The MRF T := {Ti}Ii=1 is defined with a neighborhood systemN T := {N T
i }, whereN T

i is the

set of pixels in 5× 5 patch centered at pixel i. To enforce spatial smoothness, we will penalize

deviations in a local neighborhood. The prior distribution is defined using potentials on all the
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cliques as follows

P (T) =
1

Z
exp

−γ3 I∑
i=1

∑
j∈NT

i

(Ti − Tj)2
 (3.23)

where the outer sum is performed over all pixels, γ3 ∈ R+ is a free parameter, and Z is the

normalization constant.



Chapter 4

Estimation

For our algorithm, we assume that we are provided with a speckle label map r, speckle color

Kspec, and smoke color Ksmoke. We use maximum aposteriori probability (MAP) estimation

scheme for image X. Given the speckle map r, we remove the pixel locations of y where

specular highlights are present, as they convey no information about the underlying image. We

call the new image with holes in place of specular highlights as ẙ. The MAP estimate is

x̂ = arg max
x

P (x|̊y, r) = arg max
x

P (̊y|x, r)P (x) (4.1)

The first part of the final term in Equation (4.1) is the likelihood of observing the output

ẙ. The second part is the prior probability of the image estimate x.

14



4.1 Variational Bayesian expectation maximization 15

4.1 Variational Bayesian expectation maximization

We will introduce dictionary coding S and smoke transmission map T as latent variables in the

system. The posterior probability is

P (̊y|x, r)P (x) =

∫
s,t

P (̊y,x, s, t|r) ds dt (4.2)

=

∫
s,t

P (̊y|x, s, t, r)P (x, s)P (t) ds dt (4.3)

=

∫
s,t

P (̊y|x, t, r)P (x, s)P (t) ds dt (4.4)

Equation (4.4) follows as Y is independent of S, given T and X due to our image formation

model. The final term in Equation (4.4) has three components. The first one is the likelihood of

the output being observed. The second and third component are priors on X,S and T.

Due to our modeling of the noise as i.i.d. Gaussian, the log likelihood probability

distribution turns out to be

logP (̊y|x, t, r) = − 1

σ2

∑
i|ri=0

(yi − tixi − (1− ti)Ksmoke)
2 (4.5)

We will now cover the expectation and maximization steps in the EM algorithm. Varia-

tional Bayesian factorization is introduced in the expectation step to overcome intractability.

4.1.1 Expectation step

Let xm be the estimate of the uncorrupted image after m iterations. The Q function

defined for the next iteration is

Q(x; xm) = EP (S,T|̊y,xm,r) [logP (̊y,x,S,T|r)]

= EP (S,T|̊y,xm,r) [P (̊y,T|x, r)P (S|x)P (x)] (4.6)
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The posterior probability over the latent variables can be written as

P (S,T|y,xm, r) = P (T|y,xm, r)P (S|xm) (4.7)

The codes Si for I ′ full patches in X are independent of each other. Hence

P (S|xm) =
I′∏
i=1

P (Si|xm) (4.8)

The simplified expression for Q (·) is

Q(x; xm) =EP (T|̊y,xm,r) log [P (̊y,T|x, r)] +
I′∑
i=1

EP (Si|xm) [logP (Si|x)] + logP (x) (4.9)

The expectations in Equation (4.9) are analytically intractable. We use variational factor-

ization for the latent variables S and T. The posterior probability for T is factorized over each

pixel in the image, and the posterior probability for S is factorized over coefficient corresponding

to each of the J atoms of dictionary D.

P (T|̊y,xm, r) ≈
I∏

i=1

G†i (Ti |̊y,xm, r) (4.10)

P (Si|xm) ≈
J∏
j

Gij(Sij|xm) (4.11)

G†i is the factor of T at pixel i, and Gij is the factor corresponding to jth coefficient

of code vector Si. {G†i}Ii=1 are truncated Gaussians with support [0, 1], means {µT
i }, standard

deviations {σT
i }. {Gij}Jj=1 are Gaussian distributions with means {µS

ij} and standard deviation

{σS
ij}. We have to optimize the factorization before solving for the Q function. Given all other

factors, the optimum factor for G†∗i and G∗ij are derived as

logG†∗i (Ti) = E∏
k 6=i G

†∗
k (Tk |̊y,xm,r) [logP (̊y,T|xm, r)] + c1 (4.12)

logG∗ij (Sij) = E∏
k 6=j G

∗
ik(Sik|xm) [logP (Si|xm)] + c2 (4.13)
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Equation (4.12) and Equation (4.13) are solved iteratively for optimum factors {G†∗i } and

{G∗ij} until convergence. c1 and c2 are additive constantswhichwill be absorbed in normalization

of factor distributions. The parameters of optimum factors are derived in Appendix A and

Appendix B. Once we have the optimum factorization, solving for the Q function becomes

simple. We substitue µT
i for Ti,

(
µT
i

)2
+
(
σT
i

)2 for T 2
i and µT

i µ
T
j for TiTj , and µS

ij for Sij in

Q(x; xm) = E∏I
i=1 G

†∗
i (Ti|y,xm) [logP (y,T|x, r)] +

∑
i

E∏J
j=1 G

∗
ij(Sij |xm) [logP (Si|x)] + logP (x)

(4.14)

4.1.2 M step

The final expression for Q (·) is

Q (x; xm) =− 0.5γ1x̄
ᵀ
i

(
x̄i −DµS

i

)
− log (γ2Jdist (x))

− 1

2σ2

∑
{i|ri=0}

((
µT
i

)2
+
(
σT
i

)2)
(xi −Ksmoke)

2

− 2 (yi −Ksmoke)µ
T
i (xi −Ksmoke) + δ′

(4.15)

where δ′ is independent of x.

In this step, we will maximizeQ(x; xm) with respect to x to obtain a new estimate xm+1.

The next estimate is given by

xm+1 = arg max
x

Q
(
x; xm+1

)
(4.16)

This optimization problem is solved using projected gradient descent with adaptive step size.



Chapter 5

Results

In this chapter, we compare our methods with the existing literature. To the best of our

knowledge, there is no prior work on joint removal of smoke, speckle, and noise in laparoscopy

images. We combine multiple methods which solve the subproblems and use them for end-to-

end comparison. We use anisotropic diffusion for inpainting which preserves texture better than

isotropic diffusion used in laparoscopy imaging [4, 9]. The methods used for comparison are

1. Desmoking and denoising with adaptive wiener filtering by Gibson ICIP13 [2], followed

by anisotropic diffusion inpainting.

2. Noise removal with edge preserving bilateral filtering, followed by smoke removal with

He PAMI11 [1] and anisotropic diffusion inpainting.

We observe the qualitative aspect of output images such as texture, presence of noise, and

accuracy and naturalness of colors in the output. We also use 4 quantitative measures, which

are (1) relative root mean square difference (RRMSE); (2)sum of channel-wise mean structure

similarity index measure (SSIM) across RGB channels; (3) sum of channel-wise mean quality

index based on local variance (QILV) across RGB channels; (4) sum of channel-wise chi-squared

distance between histograms along the 3 channels in the LMS colorspace. These metrics cover

a wide range of features such as noise level, blur, structure, and color distribution. RRMSE,

chi-squared distance should be low and QILV, SSIM should be high for the best method.

18
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We present examples and quantitative metrics by processing synthetically corrupted

simulated data and high quality laparoscopy data in the following sections.

5.1 Experiment details

Proposed as well as competing methods are tuned for best performance at 3 percent noise level.

Our method has three free parameters (γ1, γ2 and γ3) which are to be tuned. For synthetic

corruption, we use 3 transmission coefficient maps and 20 specularity maps. We get 3 times 5

transmission coefficient maps using 5 scalar multiples or smoke levels. We add i.i.d. Gaussian

noise of standard deviation ranging from 0 % to 7%.

5.2 Synthetic corruption on simulated data

We use this experiment to provide proof on concept of our method. The simulated data is

designed to provide basis of evaluation in terms of image texture and color. We use 6 noise

levels, 3 smoke maps, and 5 smoke levels. This results in 90 experiments.

An example of processing on synthetically corrupted phantom is Figure 5.1. Gibson

ICIP13 [2] plus inpainting does a poor job at removing smoke. Bilateral filtering, He PAMI11 [1]

plus inpainting does a decent job at desmoking, but the inpainting performance is poor. Our

dictionary prior does a better job of filling in texture. Proposed method VBEM has the best

removal of smoke, better texture and colors.

We perform quantitative benchmarking using 4 metrics. The results are presented in

Figure 5.2. Our proposed method has better performance across all metrics. RRMSE and QILV

metric in particular demonstrate robustness to high smoke concentration and high noise level.
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5.3 Synthetic corruption on high quality laparoscopy images

We now perform validation on laparoscopy data. We take high quality laparoscopy images,

corrupt them synthetically, and then process using different algorithms and compare the outputs

with the ground truth. We run experiments on 6 image, where each image is corrupted with 90

different corruption combinations.

Figure 5.3, Figure 5.4, Figure 5.5, and Figure 5.6 show the results of processing on

laparoscopy data. Figure 5.3 and Figure 5.4 demonstrate better noise removal while maintaining

sharper texture.Figure 5.5 is an example of better speckle removal by our method. Figure 5.6

demonstrated higher contrast and better colors after smoke removal. These observations are

similar to those for simulated data. Gibson ICIP13 [2] does not remove satisfactory levels of

smoke. Bilateral filtering, He PAMI11 [1] plus inpainting does a decent job at smoke removal,

but the result produces unnatural color in certain examples. Bilateral filter also leads to loss of

edges and texture. The inpainting of specular highlights has clear seams in certain regions, and

the filled regions lack texture. Proposed method VBEM has the best removal of smoke, better

texture and colors. Quantitative evaluation in Figure 5.7 demonstrates that we perform better

for each metric.

5.4 Real world laparoscopy images

We present some results of proposed method VBEM and other competing algorithms on real

world laparoscopy images. Figure 5.8 demonstrates better texture in our output. Figure 5.9 and

Figure 5.10 demonstrate better color accuracy after smoke removal. Finally, we demonstrate

some results on speckle removal in Figure 5.11.

From the examples, we observed that our method generates natural colors after removing

smoke, preserved texture while removing equal amounts of noise, and performs better filling of

speckles.
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(a) (b)

(c) (d)

(e)

Figure 5.1: Validation on Simulated Data. (a) Phantom (color component values∈ [0, 255]).
(b) Corrupted phantom with smoke, specularities, and low noise (σ = 5). Results of processing
image (b), using: (c) our method; (d) bilateral filter denoising followed by dehazing [1] followed
by inpainting; (e) adaptive filtering [2] followed by inpainting.
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(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

Figure 5.2: Quantitative Validation on Simulated Data. Boxplots for RRMSE (a), QILV (b),
SSIM (c), and chi-squared distance between histograms (d). In column 1, results are grouped
by smoke level and in column 2, grouped by noise level.
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(a) (b)

(c) (d)

(e)

(a1) (b1) (c1) (d1)

Figure 5.3: Validation on Laparoscopy Data. (a) High quality laparoscopy image (color
component values ∈ [0, 255]). (b): (a) corrupted synthetically with smoke, specularities, and
moderate noise (σ = 5). Results of processing image (b) using: (c) our method; (d) bilateral filter
denoising followed by dehazing [1] followed by inpainting; (e) adaptive filtering [2] followed by
inpainting. Zoomed insets of (a), (b), (c), (d) are (a1), (b1), (c1), (d1).
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(a) (b)

(c) (d)

(e)

(a1) (b1) (c1) (d1)

Figure 5.4: Validation on Laparoscopy Data. (a) High quality laparoscopy image (color
component values ∈ [0, 255]). (b): (a) corrupted synthetically with smoke, specularities, and
moderate noise (σ = 5). Results of processing image (b) using: (c) our method; (d) bilateral filter
denoising followed by dehazing [1] followed by inpainting; (e) adaptive filtering [2] followed by
inpainting. Zoomed insets of (a), (b), (c), (d) are (a1), (b1), (c1), (d1).
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(a) (b)

(c) (d)

(e)

Figure 5.5: Validation on Laparoscopy Data. (a) High quality laparoscopy image (color
component values ∈ [0, 255]). (b): (a) corrupted synthetically with smoke and specularities.
Results of processing image (b) using: (c) our method; (d) bilateral filter denoising followed
by dehazing [1] followed by inpainting; (e) adaptive filtering [2] followed by inpainting.
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(a) (b)

(c) (d)

(e)

(a1) (b1) (c1) (d1)

Figure 5.6: Validation on Laparoscopy Data. (a) High quality laparoscopy image (color
component values ∈ [0, 255]). (b): (a) corrupted synthetically with smoke, specularities, and
moderate noise (σ = 5). Results of processing image (b) using: (c) our method; (d) bilateral filter
denoising followed by dehazing [1] followed by inpainting; (e) adaptive filtering [2] followed by
inpainting. Zoomed insets of (a), (b), (c), (d) are (a1), (b1), (c1), (d1).
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(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

Figure 5.7: Quantitative Validation on Laparoscopy Data. Boxplots for RRMSE (a), QILV
(b), SSIM (c), and chi-squared distance between histograms (d). In column 1, results are
grouped by smoke level and in column 2, grouped by noise level.
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(a) (b)

(c) (d)

(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 5.8: Results on Real World Laparoscopic Image. (a) Observed image. Results
of processing image (a) using: (b) denoising using bilateral filtering followed by dehazing [1]
followed by inpainting; (c) our method; (d) adaptive filtering [2] followed by inpainting. Zoomed
insets of (a), (b), (c) are in (a1), (b1), (c1) and (a2), (b2), (c2).
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(a) (b)

(c) (d)

(a1) (b1) (c1)

Figure 5.9: Results on Real World Laparoscopic Image. (a) Observed image. Results of
processing image (a) using: (b) denoising with bilateral filter followed by dehazing [1] followed
by inpainting; (c) our method; (d) adaptive filtering [2] followed by inpainting. Zoomed insets
of (a), (b), (c) are in (a1), (b1), (c1).
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(a) (b)

(c) (d)

(a1) (b1) (c1)

Figure 5.10: Results on Real World Laparoscopic Image. (a) Observed image. Results of
processing image (a) using: (b) denoising with bilateral filter followed by dehazing [1] followed
by inpainting; (c) our method; (d) adaptive filtering [2] followed by inpainting. Zoomed insets
of (a), (b), (c) are in (a1), (b1), (c1).
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(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)

Figure 5.11: Results on Observed Laparoscopic Images. (a) Observed Image. Results of
processing image (a) using: (b) denoising with bilateral filter followed by dehazing [1] followed
by inpainting; (c) our method.



Chapter 6

Conclusion and Future Work

Our proposed algorithm VBEM does a better job at removing smoke, specular highlight, and

noise than the compared sequential methods. We produce natural colors after haze removal,

preserve texture after removing noise, fill in better and sharp details in the holes created by

specular highlight. These claims are supported by qualitative examples, as well as the metrics.

Our work can be extended by application on temporal sequences. The priors can be

constructed in an online manner, using the temporal information. Our developments can be tried

on different class of images and the performance can be evaluated.

32



Appendix A

Optimal factors for transmission map T

We will now derive the parameters of the optimal factorization for G†i .

logP (̊y,T|xm, r) = −
∑
i:ri=0

(ẙi − Tixmi − (1− Ti)Ksmoke)
2

− γ3
∑
i

∑
j∈NT

i

(Ti − Tj)2
(A.1)

To get optimal factor in Equation (4.12), we replace {Tk|k 6= i} with current optimum means

{µT
k } and replace {T 2

k |k 6= i} with {
(
µT
j

)2
+
(
σT
j

)2} in Equation (A.1). This will result in a

quadratic equation in Ti, from which the parameters
(
µT
i , σ

T
i

)
of truncated Gaussian factor G†∗i

can be solved [25]. The final expression for mean and standard deviation are is derived as

µT
i = µ̄i + σ̄i

φ (αi)− φ (βi)

Φ (βi)− Φ (αi)
(A.2)

σT
i = σ̄2

i

[
1 +

αiφ (αi)− βiφ (βi)

Φ (βi)− Φ (αi)
−
(
φ (αi)− φ (βi)

Φ (βi)− Φ (αi)

)2
]

(A.3)
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where φ and Φ are the PDF and the CDF of a standard normal distribution, and

µ̄i =
(1− ri) (yi −Ksmoke) (xmi −Ksmoke) + 2γ3

∑
j∈NT

i
µj

(1− ri) (xmi −Ksmoke)
2 + 2γ3

,

σ̄i =
1√
2

(
(xmi −Ksmoke)

2 + 2γ3
)− 1

2 ,

αi = − µ̄i

σ̄i
, and

βi =
1− µ̄i

σ̄i
.



Appendix B

Optimal factors for codes S

With a prelearnt dictionary D := {Dj}Jj=1, the probability distribution on the sparse code Si for

patch i of x is

logP (Sij|xm) ∝ −‖x̄m
i −DSi‖22 − λ‖Si‖1 (B.1)

Due to the absolute value operator in Equation (B.1), we are not able to fit any standard

distribution for Gij . We therefore replace L1 regularization with weighted L2 regularization.

Iterative reweighted least squares (IRLS) can be used to approximate the solution of a sparse

solution due to L1 regularization with an appropriate choice of weights [22]. Specifically, if the

estimate afterm iterations if Sm
i , then the next iteration gives the solution as

Sm+1
i = arg min

Si

‖x̄m
i −DSi‖22 +

∑
j

ΓijS
2
ij (B.2)

where the weight Γij = 1/|Sm
ij |.

We use this development to propose a strategy for factorization. At each iteration, we

set the weights as the inverse of the absolute of the mean of the factors, followed by solving

for optimum factors until convergence. When we have the weights Γ fixed, the new probability
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distribution (instead of Equation (B.1)) is

logP (Sij|xm; Γ) = −‖x̄m
i −DSi‖22 − λΓijS

2
ij + c (B.3)

where c is a constant.

We solve Equation (4.13) by substituting {Sik|k 6= j} with µS
ik in Equation (B.1) to

obtain a quadratic in Sij sans an additive constant. We can then obtain the mean and sigma of

the optimal Gaussian factor Gij as

µS
ij =

Dᵀ
j

(
x̄m
i −

∑
k 6=j Dkµ

S
ik

)
Dᵀ

jDj + λΓij

(B.4)

σS
ij =

1√
Dᵀ

jDj + λΓij

(B.5)
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